Documento sin título

LA TIERRA

Historia de la Tierra
El planeta Tierra, fotografiado en el año 1982.
La historia de la Tierra comprende 4570 millones de años (Ma),1 desde su formación a partir de la nebulosa protosolar. Ese tiempo es aproximadamente un tercio del total transcurrido desde el Big Bang, el cual se estima que tuvo lugar hace 13 700 Ma.2 Este artículo es un resumen de las principales teorías científicas de la evolución de nuestro planeta a lo largo de su existencia.

Descripción: H:\Downloads\images.jpg


Origen
El origen de la Tierra es el mismo que el del Sistema Solar. Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de gas, rocas y polvo en rotación. Estaba compuesta por hidrógeno y helio surgidos en el Big Bang, así como por elementos más pesados producidos por supernovas. Hace unos 4600 millones de años, una estrella cercana se transformó en supernova y su explosión envió una onda de choque hasta la nebulosa protosolar incrementando su momento Descripción: H:\Downloads\descarga.pngangular. A medida que la nebulosa empezó a incrementar su rotación, gravedad e inercia, se aplanó conformando un disco protoplanetario (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas perturbaciones del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse protoplanetas. Aumentó su velocidad de giro y gravedad, originándose una enorme energía cinética en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la fusión nuclear, de hidrógeno a helio, y al final, después de su contracción, se transformó en una estrella T Tauri: el Sol. La gravedad producida por la condensación de la materia –que previamente había sido capturada por la gravedad del propio Sol– hizo que las partículas de polvo y el resto del disco protoplanetario empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.3 Dentro de este grupo había uno situado aproximadamente a 150 millones de kilómetros del centro: la Tierra. El viento solar de la recién formada estrella arrastró la mayoría de las partículas que tenía el disco, condensándolas en cuerpos mayores.Descripción: H:\Downloads\descarga.jpg

Colonización de la superficie
Durante la mayor parte de la historia de la Tierra, no existían organismos pluricelulares en la tierra. La superficie se asemejaba vagamente a la de Marte, uno de los planetas vecinos de la Tierra.
La acumulación de oxígeno de la fotosíntesis dio lugar a la formación de una capa de ozono que absorbió gran parte de la radiación ultravioleta del Sol, en el sentido de que los organismos unicelulares que llegaron a la superficie de la tierra tenían menos probabilidades de morir, y los procariotas empezaron a multiplicarse y a adaptarse mejor a la supervivencia fuera del agua. Los procariotas probablemente habían colonizado la tierra ya hace 2600 Ma31 incluso antes de que el origen de las eucariotas. Durante mucho tiempo, se mantuvo la superficie estéril de los organismos multicelulares. El supercontinente Pannotia fue formado alrededor de 600 Ma y luego se fracturó (sólo 50 Ma más tarde).32 Los peces, los primeros vertebrados, aparecieron en los océanos alrededor de 530 Ma.33 A finales del Cámbrico ocurrió una extinción masiva,34 la cual terminó hace 488 Ma.35
Hace varios cientos de millones de años, las plantas (probablemente parecido a las algas) y los hongos se empezó a desarrollar en los bordes del agua, y después fuera de ella.36 Los fósiles más antiguos de la tierra hongos y plantas se data alrededor de 480 a 460 Ma, aunque la evidencia molecular sugiere que hongos pueden haber colonizado la tierra ya hace 1000 Ma y las plantas hace 700 Ma.37 Al principio cerca del borde del agua, después las mutaciones y variaciones dieron lugar a una nueva colonización de este nuevo entorno. .41 Más tarde podrían aventurarse en tierra por breves períodos. Progresivamente, algunos se adaptaron tan bien a la vida terrestre que pasaban su vida adulta en la tierra, a pesar de nacer y tener que poner los huevos en el agua. Este fue el origen de los anfibios. Hace cerca de 365 Ma, se produjo una nueva extinción masiva, tal vez como resultado de un enfriamiento global.42 Las plantas desarrollaron semillas, y se aceleró drásticamente su propagación en la tierra en esta época (hace unos 360 Ma).43 ,44

Pangea, el supercontinente más reciente, existió de 300 a 180 Ma. Las siluetas de los continentes modernos y otras masas de tierra se indican en este mapa.
Unos 20 millones de años más tarde (hace 340 Ma45 ), evolucionó el huevo amniótico, que podría ponerse en la tierra, dando una ventaja en la supervivencia de los embriones de tetrápodos. Esto dio lugar a la divergencia de los amniotas y los anfibios. Otros 30 millones de años (hace 310 Ma46 ) después, se observa la divergencia de los synapsidas (incluidos los mamíferos) y los saurópsidos (incluidas las aves, no aves y los reptiles no mamíferos). Otros grupos de organismos continuó evolucionando en líneas divergentes (en peces, insectos, bacterias, etc), pero se conocen menos detalles. Hace 300 Ma, se formó el supercontinente más cercano a la actualidad, llamado Pangea. La extinción más grave hasta hoy tuvo lugar hace 250 Ma, en el límite de los períodos Pérmico y Triásico: el 95% de la vida en la Tierra desapareció,47 posiblemente debido al evento volcánico llamado trampas siberianas. El descubrimiento del cráter de la Tierra de Wilkes en la Antártida podría sugerir una conexión con la extinción del Pérmico-Triásico, pero la edad del cráter no se conoce.48 Pero la vida continuó, y en torno a 230 Ma,49 los dinosaurios se separaron de sus antepasados reptiles. Un extinción masiva entre ellos períodos Triásico y Jurásico hace 200 Ma prescindió de muchos de los dinosaurios,50 aunque pronto se convirtieron en los dominantes entre los vertebrados. Aunque algunos de los mamíferos empezaron a divergir durante este periodo, los mamíferos que existían tenían todos probablemente semejanzas pequeñas musarañas.51 Hace unos 180 Ma, Pangea se dividió en Laurasia y Gondwana. El límite entre las aves y los dinosaurios no-aves no está claro. Archaeopteryx, considerado tradicionalmente una de las primeras aves, vivó hace alrededor de 150 Ma.52 Las primeras evidencias de las angiospermas es durante el período Cretácico, unos 20 millones de años más tarde (hace 132 Ma)53 La competencia con las aves condujo a la extinción a muchos pterosaurios, y los dinosaurios fueron probablementeen declive por varios motivos.54 Se cree que cuando, hace 65 Ma, un meteorito de 10 kilómetros chocó con la Tierra cerca de la Península de Yucatán, expulsó grandes cantidades de partículas de polvo y vapor a la atmósfera impidiendo la llegada de luz solar a la superficie, y por tanto la fotosíntesis.

Rotación
Inclinación del eje de la Tierra (u oblicuidad) y su relación con el eje de rotación y el plano orbital.
ículo principal: Rotación de la Tierra
El período de rotación de la Tierra con respecto al Sol, es decir, un día solar, es de alrededor de 86 400 segundos de tiempo solar (86 400,0025 segundos SIU).131 El día solar de la Tierra es ahora un poco más largo de lo que era durante el siglo XIX debido a la aceleración de marea, los días duran entre 0 y 2 ms SIU más.132 133Descripción: H:\Downloads\27.gif

Dirección de rotación (Acelerado unas 23 000 veces)
El período de rotación de la Tierra en relación a las estrellas fijas, llamado día estelar por el Servicio Internacional de Rotación de la Tierra y Sistemas de Referencia (IERS por sus siglas en inglés), es de 86 164,098903691 segundos del tiempo solar medio (UT1), o de 23h 56m 4,098903691s.4 nota 12 El período de rotación de la Tierra en relación con el equinoccio vernal, mal llamado el día sidéreo, es de 86 164,09053083288 segundos del tiempo solar medio (UT1) (23h 56m 4,09053083288s).4 Por tanto, el día sidéreo es más corto que el día estelar en torno a 8,4 ms.134 La longitud del día solar medio en segundos SIU está disponible en el IERS para los períodos 1623-2005135 y 1962-2005.136
Aparte de los meteoros en la atmósfera y de los satélites en órbita baja, el movimiento aparente de los cuerpos celestes vistos desde la Tierra se realiza hacia al oeste, a una velocidad de 15°/h = 15'/min. Para las masas cercanas al ecuador celeste, esto es equivalente a un diámetro aparente del Sol o de la Luna cada dos minutos (desde la superficie del planeta, los tamaños aparentes del Sol y de la Luna son aproximadamente iguales).137 138
Órbita
Artículo principal: Traslación de la Tierra
Galaxia espiral barrada
Ilustración de la galaxia Vía Láctea, mostrando la posición del Sol
La Tierra orbita al Sol a una distancia media de unos 150 millones de kilómetros, completando una órbita cada 365,2564 días solares, o un año sideral. Desde la Tierra, esto genera un movimiento aparente del Sol hacia el este, desplazándose con respecto a las estrellas a un ritmo de alrededor de 1°/día, o un diámetro del Sol o de la Luna cada 12 horas. Debido a este movimiento, en promedio la Tierra tarda 24 horas (un día solar) en completar una rotación sobre su eje hasta que el sol regresa al meridiano. La velocidad orbital de la Tierra es de aproximadamente 29,8 km/s (107 000 km/h), que es lo suficientemente rápida como para recorrer el diámetro del planeta (12 742 km) en siete minutos, o la distancia entre la Tierra y la Luna (384 000 km) en cuatro horas.1Descripción: H:\Downloads\1EF.jpg

La Luna gira con la Tierra en torno a un baricentro común, debido a que este se encuentra dentro de la Tierra, a 4541 km de su centro, el sistema Tierra-Luna no es un planeta doble, la Luna completa un giro cada 27,32 días con respecto a las estrellas de fondo. Cuandoe, es de 29,53 dí se combina con la revolución común del sistema Tierra-Luna alrededor del Sol, el período del mes sinódico, desde una luna nueva a la siguientas. Visto desde el polo norte celeste, el movimiento de la Tierra, la Luna y sus rotaciones axiales son todas contrarias a la dirección de las manecillas del reloj (sentido anti-horario). Visto desde un punto de vista situado sobre los polos norte del Sol y la Tierra, la Tierra parecería girar en sentido anti-horario alrededor del Sol. Los planos orbitales y axiales no están alineados: El eje de la Tierra está inclinado unos 23,4 grados con respecto a la perpendicular al plano Tierra-Sol, y el plano entre la Tierra y la Luna está inclinado unos 5 grados con respecto al plano Tierra-Sol. Sin esta inclinación, habría un eclipse cada dos semanas, alternando entre los eclipses lunares y eclipses solares.1 139

La esfera de Hill, o la esfera de influencia gravitatoria, de la Tierra tiene aproximadamente 1,5 Gm (o 1 500 000 kilómetros) de radio.140 nota 13 Esta es la distancia máxima en la que la influencia gravitatoria de la Tierra es más fuerte que la de los más distantes Sol y resto de planetas. Los objetos deben orbitar la Tierra dentro de este radio, o terminarán atrapados por la perturbación gravitatoria del Sol.
Desde el año de 1772, se estableció que cuerpos pequeños pueden orbitar de manera estable la misma órbita que un planeta, si esta permanece cerca de un punto triangular de Lagrange (también conocido como «punto troyano») los cuales están situados 60° delante y 60° detrás del planeta en su órbita. La Tierra es el cuarto planeta con un asteroide troyano (2010 TK7) después de Júpiter, Marte y Neptuno de acuerdo a la fecha de su descubrimientonota 14 Este fue difícil de localizar debido al posicionamiento geométrico de la observación, este fue descubierto en el 2010 gracias al telescopio WISE (Wide-Field Infrared Survey Explorer) de la NASA, pero fue en abril del 2011 con el telescopio «Canadá-Francia-Hawái» cuando se confirmó su naturaleza troyana,143 y se estima que su órbita permanezca estable dentro de los próximos 10 000 años.144
La Tierra, junto con el Sistema Solar, está situada en la galaxia Vía Láctea, orbitando a alrededor de 28 000 años luz del centro de la galaxia. En la actualidad se encuentra unos 20 años luz por encima del plano ecuatorial de la galaxia, en el brazo espiral de Orión.145

Estaciones e inclinación axial
Debido a la inclinación del eje, se producen las estaciones. En la ilustración es invierno en el hemisferio norte y verano en el hemisferio sur. (La distancia y el tamaño entre los cuerpos no está a escala).
Debido a la inclinación del eje de la Tierra, la cantidad de luz solar que llega a un punto cualquiera en la superficie varía a lo largo del año. Esto ocasiona los cambios estacionales en el clima, siendo verano en el hemisferio norte ocurre cuando el Polo Norte está apuntando hacia el Sol, e invierno cuando apunta en dirección opuesta. Durante el verano, el día tiene una duración más larga y la luz solar incide más perpendicularmente en la superficie. Durante el invierno, el clima se vuelve más frío y los días más cortos. En la zona del Círculo Polar Ártico se da el caso extremo de no recibir luz solar durante una parte del año; fenómeno conocido como la noche polar. En el hemisferio sur se da la misma situación pero de manera inversa, con la orientación del Polo Sur opuesta a la dirección del Polo Norte.
Espacio oscuro con con la Tierra creciente a menor Luna izquierda, media luna en la parte superior derecha, el 30 % del diámetro aparente de la Tierra, cinco veces el diámetro aparente distancia entre la Tierra en la parte izquierda baja, la Luna creciente en la esquina superior derecha, el diámetro aparente de la Tierra es del 30 %; cinco veces el diámetro aparente entre la Tierra desde el espacio; la luz solar proveniente del lado derecho.
La Tierra y la Luna vistas desde Marte, imagen del Mars Reconnaissance Orbiter. Desde el espacio, la Tierra puede verse en fases similares a las fases lunares.
Por convenio astronómico, las cuatro estaciones están determinadas por solsticios (puntos de la órbita en los que el eje de rotación terrestre alcanza la máxima inclinación hacia el Sol —solsticio de verano— o hacia el lado opuesto —solsticio de invierno—) y por equinoccios, cuando la inclinación del eje terrestre es perpendicular al Sol. En el hemisferio norte, el solsticio de invierno se produce alrededor del 21 de diciembre, el solsticio de verano el 21 de junio, el equinoccio de primavera el 20 de marzo y el equinoccio de otoño el 23 de septiembre. En el hemisferio sur la situación se invierte, con el verano y los solsticios de invierno en fechas contrarias a la del hemisferio norte. De igual manera sucede con el equinoccio de primavera y de otoño.146
El ángulo de inclinación de la Tierra es relativamente estable durante largos períodos de tiempo. Sin embargo, la inclinación se somete a nutaciones; un ligero movimiento irregular, con un período de 18,6 años.147 La orientación (en lugar del ángulo) del eje de la Tierra también cambia con el tiempo, precesando un círculo completo en cada ciclo de 25 800 años. Esta precesión es la razón de la diferencia entre el año sidéreo y el año tropical. Ambos movimientos son causados por la atracción variante del Sol y la Luna sobre el abultamiento ecuatorial de la Tierra. Desde la perspectiva de la Tierra, los polos también migran unos pocos metros sobre la superficie. Este movimiento polar tiene varios componentes cíclicos, que en conjunto reciben el nombre de movimientos cuasiperiódicos. Además del componente anual de este movimiento, existe otro movimiento con ciclos de 14 meses llamado el bamboleo de Chandler. La velocidad de rotación de la Tierra también varía en un fenómeno conocido como variación de duración del día.148
En tiempos modernos, el perihelio de la Tierra se produce alrededor del 3 de enero y el afelio alrededor del 4 de julio. Sin embargo, estas fechas cambian con el tiempo debido a la precesión orbital y otros factores, que siguen patrones cíclicos conocidos como ciclos de Milankovitch. La variación de la distancia entre la Tierra y el Sol resulta en un aumento de alrededor del 6,9 %nota 15 de la energía solar que llega a la Tierra en el perihelio en relación con el afelio. Puesto que el hemisferio sur está inclinado hacia el Sol en el momento en que la Tierra alcanza la máxima aproximación al Sol, a lo largo del año el hemisferio sur recibe algo más de energía del Sol que el hemisferio norte. Sin embargo, este efecto es mucho menos importante que el cambio total de energía debido a la inclinación del eje, y la mayor parte de este exceso de energía es absorbido por la superficie oceánica, que se extiende en mayor proporción en el hemisferio sur.
Descripción: H:\Downloads\estaciones.png

TEMAS RELACIONADOS:

1.La estructura de la tierra

2.La geografia humana

3.La luna

4.La vida en la tierra

5.Las placas tectonicas

6.Los 10 volcanes mas grandes del mundo

7.La civilizacion

 

PUEDES ENVIARNOS TU SUGERENCIA PARA MODIFICAR LA PAGINA :

MIERCOLES, 05-11-2014 8:00 PM hecho por :Helio Alexander tito atanacio

en peru-lima-mi peru

consejo que te serviran:

1.ciuda a tu madre porque dentro de poco la podrias perder

2.si tienes dinero no lo malgastes en tonserias si no guardalo por que dentro de poco en la calle vivirias

3.si amas a alguien , dicelo antes que se enamore de otro

puedes darnos tus consejos:

te recomendaamos que leas :

1.mi planta de raranja lima                  9. la isla del tesoro
      
2.vamos a calentar el sol                    10. ollantay
3.el velero de cristal                       11. comentarios reales
      
4.paco yunque
5.el tugsteno
6.el conde de montecristo
7.fuente ovejuna
8.los viajes de gulliver cuentos peruanos
danos tus libros favoritos: